465 research outputs found

    Explicit form of the Mann-Marolf surface term in (3+1) dimensions

    Full text link
    The Mann-Marolf surface term is a specific candidate for the "reference background term" that is to be subtracted from the Gibbons-Hawking surface term in order make the total gravitational action of asymptotically flat spacetimes finite. That is, the total gravitational action is taken to be: (Einstein-Hilbert bulk term) + (Gibbons-Hawking surface term) - (Mann-Marolf surface term). As presented by Mann and Marolf, their surface term is specified implicitly in terms of the Ricci tensor of the boundary. Herein I demonstrate that for the physically interesting case of a (3+1) dimensional bulk spacetime, the Mann-Marolf surface term can be specified explicitly in terms of the Einstein tensor of the (2+1) dimensional boundary.Comment: 4 pages; revtex4; V2: Now 5 pages. Improved discussion of the degenerate case where some eigenvalues of the Einstein tensor are zero. No change in physics conclusions. This version accepted for publication in Physical Review

    Rastall gravity is equivalent to Einstein gravity

    Full text link
    Rastall gravity, originally developed in 1972, is currently undergoing a significant surge in popularity. Rastall gravity purports to be a modified theory of gravity, with a non-conserved stress-energy tensor, and an unusual non-minimal coupling between matter and geometry, the Rastall stress-energy satisfying nabla_b [T_R]^{ab} = {\lambda/4} g^{ab} nabla_b R. Unfortunately, a deeper look shows that Rastall gravity is completely equivalent to Einstein gravity --- usual general relativity. The gravity sector is completely standard, based as usual on the Einstein tensor, while in the matter sector Rastall's stress-energy tensor corresponds to an artificially isolated part of the physical conserved stress-energy.Comment: V1: 5 pages. V2: 6 pages; 5 added references, some added discussion, no changes in physics conclusions. V3: 7 pages, 2 added references, some added discussion, no changes in physics conclusion

    Hawking radiation: a particle physics perspective

    Full text link
    It has recently become fashionable to regard black holes as elementary particles. By taking this suggestion seriously it is possible to cobble together an elementary particle physics based estimate for the decay rate (black hole)i→(black hole)f+(massless quantum)(\hbox{black hole})_i \to (\hbox{black hole})_f + (\hbox{massless quantum}). This estimate of the spontaneous emission rate contains two free parameters which may be fixed by demanding that the high energy end of the spectrum of emitted quanta match a blackbody spectrum at the Hawking temperature. The calculation, though technically trivial, has important conceptual implications: (1) The existence of Hawking radiation from black holes is ultimately dependent only on the fact that massless quanta (and all other forms of matter) couple to gravity. (2) The thermal nature of the Hawking spectrum depends only on the fact that the number of internal states of a large mass black hole is enormous. (3) Remarkably, the resulting formula for the decay rate gives meaningful answers even when extrapolated to low mass black holes. The analysis strongly supports the scenario of complete evaporation as the endpoint of the Hawking radiation process (no naked singularity, no stable massive remnant).Comment: (15 pages) RevTe
    • …
    corecore